Modelling o

SUMMER TERM 2020

F(w) = f_) f(x)e 2mxe gy

s(t)eu(t)
X
xxxxxxxxx

X > Tom »
' iz
aliasing

Lecture 18

Signal Theory & Sampling

Michael Wand - Institut fur Informatik - michael.wand@uni-mainz.de

Reminder:
Constructing Bases

Frequency Space Analysis

‘\ 3\ |

Which of the following two is better?

N
/ : | |

Obvious, but why?

= Long story...
= Sampling theory
= Fourier transforms involved

= We'll look at this 42T now.
= Also: why the “Sombrero”-style shape?

Radial Basis Functions

. R

Regular grids Irregular
(w/scaling)

Signal Theory & Sampling

lTopics

Topics
= What is the problem?
= Fourier transform
= Theorems
= Analysis of regularly sampled signals
= [rregular sampling

Model Problem: Raytracing

view rays

A —

1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1

Raytracing
= Sample 3D scenes with “view rays” through each pixel

9

J B4 1

| 3

L ;I ".|

=) Ik

1
y

" |"'|_
ety e

'J-'Illllll_'rl

Sampling Aliasin

1L

e
. ...“ “. ! .l..v-"l"-"""J"l.-I

IIJI

=2

yum buneibau

text ~

Reconstruction Aliasing

3

pixel Gaussian Lanczos

—J text

magnified pixels

: bilinear
image

Aliasing — the Short Story

Sampling Aliasing
= Sampling a signal inadequately

= Detail information shows up “under false name”
= Too-high-frequency details — low-frequency moiré

= Need to understand sampling requirements

Reconstruction Aliasing

_ow-detail signal is reconstructed with unwarranted
high-frequency details

Need to understand reconstruction process

Rendering: Crucial for quality + efficiency

Underlying Question

Deeper question underlying this

= How much information is in a function?

Complex Numbers

Complex Numbers

Vector space R*: pIm
=z€EC-oz=(x,y) =:x+1iy ﬂzll
= | is the upward basis vector (0,1) AZ :
= i introduces the y-axis Re
= Unlike R: Unordered! K/

Additional multiplication
= Multiplying complex numbers z; - z5:
= Multiply length
= Add angles
= This makes i =+v—1

Complex exponential

4 Im

e
N

Complex exponentials:

= Powers of imaginary numbers
= rotating vectors

= Euler’'s formula:

l

e = cosx +isinx

Real Fourier Series

Fourier Basis

Fourier basis (orthonormal)
B = {1,\/§sin 2mhkx \/2 cos 2mwkx ‘k € NZl}

Fourier series
= Periodic functions f:[0,1] - R
= Fourier series approximation:

f(x) =bg + \/52 |ay sin 2mhkx 4+ by, cos 2mhkx]
k=0
= Coefficients?

Fourier Basis

Fourier series

= Fourier series:

f(x) = by + 2 Z |ay sin 2mkx 4+ by, cos 2mhkx]
k=0
= Coefficients?
1
| f(x) - sin2mkx dx

ap = (f(x),\/isin anx) =2 F
1
0

b = (f(x),V2 cos 2mhx) = /2
1
bo = (FC1) = | FCOd
0

= Convergence?

J f(x) - cos2mkx dx

Fourier Series

Fourier Series

= Converges for functions
= Finite variation
= Lipschitz-smooth

= Convergence means:

lim [|f = f||* = lim (f = 7,f = f) = 0

k— o0

Complex
Fourier Series

Fourier Basis

Fourier basis (real):
Br = {1,\/§sin 21k ,\2 cos 2mhkx ‘k € N}

Fourier basis (complex):
Bc = {exp(2mikx) |k € Z}

Complex Series

Fourier series
= Fourier series:

oo

fx) = z 7, exp(2mikx)

k=—o0

= Coefficients?

zr = {f(x), exp(—2mikx))
1 , Hermetian space
= | f(x)-exp(—2mikx)dx
0

Tip: 3BBLUETBROWN - But what is a Fourier series? From heat flow to circle drawings
https://www.youtube.com/watch?v=r6sGWTCMz2k

Scalar Product on Real Function Spaces

Real (finite-dim.) Vector Spaces
» Forz,q € R%: (7,q) = 2Tq

Real Function Spaces
= For suitable” functions

[LgQAcR->R

the Is defined as:
frg=(fg)= | F)-gCo) dx
o)
= Measures an and In an abstract sense

") square-integrable

Complex Function Spaces

Hermetian Vector Space , =
= Forz,q € C%: (7,q) :==27q Zi=a—ib

Hermetian Function Space
= For suitable functions
[,gQcCcR->C
the is defined as:

fog=(fg) = fﬂf(x) 900 dx

= Measures an and INn an abstract sense

Fourier Transtform

Fourier Transform

Continuous transform:

= Continuous function set: {e ~127®* | » € R}
= Orthogonal on R
= Projection via scalar products = Fourier transform

= Fourier transform: (R - C) - (F:R - C)
F(w) =j f(x)e 2mxwdy
= Inverse Fourier transform: (F:R - C) -» (R - C)

f(x) = f_ooF(a))eZ”ix‘“da)

Fourier Transform

Interpreting the result:

= Transforming a real function
f(x):R->R

= Result: F(w):R - C
= w are frequencies (real)

= Real input f: Symmetric result
F(-w) = F(w)

= Qutput are complex numbers

= Magnitude: "power spectrum”
(frequency content)

= Phase: phase spectrum
(encodes shifts)

Important Functions

Some important Fourier-transform pairs

1 box(x) /&inc((u)
i I I = -

= =

= Box function:

f(x) =box(x) - F(w)=

w

= Gaussian:

SIn w

:= sinc(w)

_(mtw)?

f(x)ze‘ax2 — F(a))—f e a

JE

Triangle Function
Bilinear Interpolation

triangle(x)

AT

-100 -80 -60 -40 -20 0 20 40 60

80

100

sin? w

f(x) = triangle(x) —» F(w) = = sinc?(w)

Higher Dimensional FT

Multi-dimensional Fourier Basis:
» Functions f: R% - C
= 2D Fourier basis:

f(x,v) represented
as combination of

= [n general:
= All combinations of 1D functions
= ,Tensor product basis”

" b, (x,v) = bi(x) - b;j(v)

Tensor Product

b;(x)

Example
Gaussian Basis Functions

Convolution

Convolution:
= Weighted average of functions
= Definition:

£ ® g(b) = j FCOg(C — tdx

®/\

Example:

| Saml

Theorems

Convolution theorem:

= Fourier Transform converts convolution into
multiplication
FT(f®g)=F -G

Theorems

Convolution theorem:

= Fourier Transform converts convolution into
multiplication
FT(f®g) =F -G

All other cases as well
 FT7Y(F-G)=f®
» FT(f-9) = F®G
« FT"Y(FQG) = | -

= (Formally: Fourier basis diagonalizes shift-invariant
linear operators)

Signal Theory

Sampling a Signal

Given:
= Signal f:R—> R
= Store digitally:
= Sample regularly ... £(0.3), £(0.4), £(0.5) ...
= Question: what information is lost?

Del

[/()

ta Function
1 /()

T

[/()

-

X

[/) J

X

Dirac Delta “Function”

jﬂf(x)dx =1

= [, 6(x)dx = 1, zero everywhere but at x =0

= Idealization (“distribution”) — think of very sharp peak

Fourier Transform

1 F(x) J 1 F(w)

Fourier Transform Pair
= Dirac delta function & uniform spectrum...
= ...and vice versa.

Important Functions

Intuition: Gaussians

Jk_ Aj’l

(mtw)?

f(x)ze‘ax2 — F(a))—\/7 e a

QI=I

Dirac Comb (Impulse Train)

UL [

X W
Impulse Train

M1, (x) = §(x—Fk-T)
=2,

Fourier Transform

1
FT(I) = — 11l

Sampling a function
= Multiplication with impulse train

fsampled(x) = f(x) - I (x)

Sampling & Reconstruction

spatial domain frequency domain spatial domain frequency domain
RA u(t) AFT()(f) As®) u(d) FTIs) (/)@ FT(w)(f)
»® H 8
JJ/_ X% % % X X %%
\\/ > o D >
t f *x t
aliasing
(a) a continuous function and (c) sampling: frequencies beyond the Nyquest limit
its frequency spectrum V/2 appear as aliasing
As@®) AFTs)(f) (s(?) ;H'(f')) ®FT(R) (FT(s)(f) ®‘P‘T' (w)(f))*R(f)
FT'R) !
| Vrrred, AT AN
¥ L
t f = t Rp) | f
(b) a regular sampling pattern (d) reconstruction: filtering with a low-pass filter R
(impulse train) and its frequency spectrum to remove replicated spectra

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles & Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 "Aliasing and Antialiasing”

Sampling a Signal

spatial domain frequency domain
Au) AFT(w)(f)
RN J\ .
t f

(a) a continuous function and
its frequency spectrum

As() A FT(s)(f)

LT | |

(b) a regular sampling pattern
(impulse train) and its frequency spectrum

Sampling a Signa

spatial domain

frequency domain

As)eu(t)
X
XXXxxx % X %X-x
t

FT(s)(f) ®5T(u)(f)

S

aliasing

(¢) sampling: frequencies beyond the Nyquest limit
v./2 appear as aliasing

Reconstructing a Signal

(s(t)*u(t)®FT'(R)

l

(FT(s)(f)® FT(u)(f))*R(f)
!

~Y

R()

(d) reconstruction: filtering with a low-pass filter R
to remove replicated spectra

Regular Sampling

Results: Sampling

= Band-limited signals can be represented exactly
= Sampling with frequency vq:
Highest frequency in Fourier spectrum < v, /2
= Higher frequencies alias
= Aliasing artifacts (low-frequency patterns)
= Cannot be removed after sampling (loss of information)

band-limited aliasing

Reqgular Sampling

Result: Reconstruction
= When reconstructing from discrete samples

= Use band-limited basis functions
= Highest frequency in Fourier spectrum < v /2
= Otherwise: Reconstruction aliasing

pixel Gaussian

Reqgular Sampling

Reconstruction Filters

= Optimal filter: sinc
(no frequencies discarded) QR

= However:

= Ringing artifacts in spatial domain
, Ringing by sinc reconstruction
= Not useful for images from [Mitchell & Netravali,

(better for audio) Siggraph 1988]
= Compromise

= Gaussian filter
(most frequently used)

= There exist better ones,
such as Mitchell-Netravalli,

Lancos, etc... 2D sinc 2D Gaussian

[rregular Sampling

[rregular Sampling

Irregular Sampling
= No comparable formal theory

= However: similar idea
= Band-limited by “sampling frequency”
= Sampling frequency = mean sample spacing
— Not as clearly defined as in reqgular grids
— May vary locally (adaptive sampling)
= Aliasing
= Random sampling creates noise as aliasing artifacts

= Evenly distributed sample concentrate noise in higher
frequency bands in comparison to purely random sampling

Consequences

When designing bases for function spaces
= Use band-limited functions

= Typical scenario:
= Regular grid with spacing o
= Grid points g;

= Use functions: exp (— (X;%i)z)
= Irreqular sampling:

= Same idea

= Use estimated sample spacing instead of grid width

= Set ¢ to average sample spacing to neighbors

Random Sampling

Random sampling
= Aliasing gets replaced by noise
= Can we optimize this? — Yes!

Different types of noise
= "White noise”: All frequencies equally likely
= "“Blue noise”: Pronounced high-frequency content

Depends on sampling
= Random sampling is “white”
= Poisson-disc sampling (uniform spacing) is “blue”

Random Noise

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Poisson Disc Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Reqgular Samplin

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (Unitorm Displacem.)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (same density)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Examples

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Why should we care?

Exampe: Stochastic Raytracing
= Shoot random rays — random noise

= Low-pass filter - less noise
= Low-frequency noise persists
= LF-noise is particularly ugly!
= Need many samples

Recipe:

Sampling Signals

How to Sample

Given
= Function f:R-> R

Uniform sampling
= Sample spacing § (given)

Choose filter kernel

w(x) = exp(—5~1x?)

= Sample (f ® w(x)) regularly

= For example: Monte-Carlo integration

How to Sample

Given
= Function f: R" - R™

Multi-dimensional Gaussian
= In case of doubt, try:

n

w(x) = 1_[exp (— %xé)

ad=1

= Same procedure otherwise...

How to Sample

How to Sample

Non-Uniform Sampling
= Choose sample spacing 6(x)

= Match level of detall
= Nyquest limit
= Spacing between two “ups” = frequency

= Filter adaptively
= Varying filter width

= Sample adaptively
= Sampling width varies accordingly

Recipe:
Reconstructing Signals

Signal Rec

(S(f} u(t) @ FT(R)

J VW@M

(FT(s)(f) @lFT(u}(f)) *R(f)

N

i

RG |

Uniform

= Given samples y; = f(x;),i =1, ...,

= Chose reconstruction filter
= Try: w(x) = exp(—6~2%x2)

n, spacing é

Reconstruction: f = Y™, y; - w(x — x;)

Non-Uniform

Non-Uniform
= Samples y; = f(x;),i =1, ...,n,
= Varying spacing d;
= If unknown: average spacing of k-nearest neighbors

= Chose reconstruction filter
= Try: w;(x) = exp(—5i_2(x — xi)z)

Reconstruction:

~ =1y wi(x—x;)
f — “Partition of Unity”

Z?=1 wi(X o xl)\,l—l just to be save...

Reconstruction: Implementation

Variant 1: Gathering
= Record samples in list (plus kD Tree, Octree, grid)

= For each pixel:
= Range query: kernel support radius
= Compute weighted sum (last slide)

Variant 2: Splatting
= Two pixel buffers: Color (3D), weight (1D)

= [terate over samples:
= Add Gaussian splat to weight buffer
= Add 3x Gaussian splat scaled by RGB to color buffer

= In the end: Divide color buffer by weight buffer.

Gathering

<1 pixel =

) ® (] o
@
()
]
@ @
()
® - ol © °

7’
' 4/ . """"""" ,. ‘ '
~ /’ X
) "I ’Il ’,_-N\\ \“ 4
i ; \
e 1 INER N !
1 \ Vo e]
\ \ @/]
‘\‘ .\ N’ ’II
\ N\, /
o @B e "o > ®
/"

@ () ® e @]
()
® hy @
@
) / @ \ ® ®

rays x;, f (x;) filter

?=1 Vi + w(x — x;)

=

Splatting

color buffer weight buffer

Yic1 Vi - w(x—x;)
Z?:l (U(X o xi)

7=

Remark: Anisotropic Filtering

7T 7 (,"I 7 4 L4 4 -

Building Anisotropic Filters

main axis

“

X X
2
L)

x'[TT . T]x
How to construct?
= Given: Kernel w(x)
= For example: w(x) = exp (—%xTx)
= Coordinate transformation:
= w(x) » w(Tx)
= Gaussian: w(x) = exp (—%XT[TT : T]x)

Advancec
Reconstruction

Push-Pull Algorithm

i

-

xl 3 '
“L‘ k
(b)

FIGURE 10.103
Reconstruction with the Mitchell multistage filter.

(a)

(a) The test situation: a straight edge between black and white regions. (b) A failure of

weighted-average reconstruction. Reprinted, by permission, from Mitchell in Computer

Reprinted, by permission, from Mitchell in Computer
Graphics (Proc. Siggraph 87), fig. 11, p. 72.

Grapbhics (Proc. Siggraph ’87), fig. 14, p. 72.

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Problem with partition-of unity:
Artifacts at boundaries of sampling

Remedy

Push-Pull-Algorithm

= Reconstruct at multiple levels (stratification)
= Build quadtree
= Keep one sample per cell
= Creates different levels

= Add results together
= Do not reconstruct in empty cells

Reduced bias

Adva
Movi

nced Reconstru

ction

Ng Least-5q

Ualres

Moving Least Squares

Moving least squares (MLS):

= MLS is a standard technique for scattered data
interpolation.

= Generalization of partition-of-unity method

Weighted Least-Squares

Least Squares Approximation:

N B, B, Bj
@ p; = (%,))) o O
@ o ©
o O @ ® @ ‘ :
target values basis functions
a(X)
e -
7
~

=

weighting functions least squares fit

Least-Squares

Least Squares Approximation:

y(x) =Y 2,B,(x)

Best Fit (weighted):

argmin Y’ H(y(xi)— yi)a)(xi)H2

C. i=1

Least-Squares
Normal Equations: (BTWZB)}\ = (BTW2)y
Solution: A = (BTWZB)_1 B'W-y
Evaluation: J7(x) =<b(x), A>=b(x)"(B"W’B] ' B"W?y

MLS approximation

b:=|B,,..B,]
— b(x,) - _.V1] _a)(x1)]
B:= : y:=| : W=
—b(x,)—] Y - ao(x,)

Moving Least-Squares
Moving Least Squares Approximation:

target values

7z ~
mq
”
- ~

move basis and weighting function,
recompute approximation y(x)

Moving Least-Squares
Moving Least Squares Approximation:

approximation

summary: MLS

Standard MLS approximation:

= Choose set of basis functions
= Typically monomials of degree 0,1,2

= Choose weighting function
= Typical choices: Gaussian, Wendland function, B-Splines
= Solution will have the same continuity as the weighting function.

= Solve a weighted least squares problem at each point:

F(x)=b(x)" (B(x)" W(x)’B(x)] ' B(x)" W(x)’y

moment matrix

= Need to invert the “"moment matrix” at each evaluation.

= Use SVD if sampling requirements are not guaranteed.

Remark
Uncertainty Relation(s)

Fourier Transform Pairs

Gaussians

Jk_ Aj’l

(mtw)?

f(x)ze‘ax2 - F(a))—\/7 e a

o L

JE

Taylor-Approximation

Function f Think of this:
()
f(x:) I:’:yi ‘.
3 e
TeatVile
> T '_X'
tangent slope neighborhood differences
R->R
! f= 01 0)
fx+h)—f(x) v
! = / y Yi-1
f1e) = Jim h fr(x) ===

h

