
Modelling I
SUMMER TERM 2020

Lecture 18

Signal Theory & Sampling
Michael Wand · Institut für Informatik · .

Reminder:

Constructing Bases

Frequency Space Analysis

Which of the following two is better?

Obvious, but why?

▪ Long story...

▪ Sampling theory

▪ Fourier transforms involved

▪ We’ll look at this later now.

▪ Also: why the “Sombrero”-style shape?

Radial Basis Functions

Regular grids Irregular

(w/scaling)

Signal Theory & Sampling

Topics

Topics

▪ What is the problem?

▪ Fourier transform

▪ Theorems

▪ Analysis of regularly sampled signals

▪ Irregular sampling

Model Problem: Raytracing

view rays

Raytracing

▪ Sample 3D scenes with “view rays” through each pixel

Sampling Aliasing
1

sa
m

pl
e

/
pi

xe
l

In
te

gr
at

in
g

w
ith

G
au

ss
ia

n
w

ei
gh

ts

Sampling Text

Reconstruction Aliasing

pixel Gaussian Lanczos

bilinear
image

magnified pixels

Aliasing – the Short Story

Sampling Aliasing

▪ Sampling a signal inadequately

▪ Detail information shows up “under false name”

▪ Too-high-frequency details → low-frequency moiré

▪ Need to understand sampling requirements

Reconstruction Aliasing

▪ Low-detail signal is reconstructed with unwarranted

high-frequency details

▪ Need to understand reconstruction process

Rendering: Crucial for quality + efficiency

Underlying Question

Deeper question underlying this

▪ How much information is in a function?

Complex Numbers

Complex Numbers

Vector space ℝ2:

▪ 𝑧 ∈ ℂ → 𝑧 = 𝑥, 𝑦 =: 𝑥 + 𝑖𝑦

▪ 𝑖 is the upward basis vector (0,1)
▪ 𝑖 introduces the y-axis

▪ Unlike ℝ: Unordered!

Additional multiplication

▪ Multiplying complex numbers 𝑧1 ⋅ 𝑧2:
▪ Multiply length

▪ Add angles

▪ This makes 𝑖 = −1

𝑧

𝑧

∡𝑧

Im

Re

Complex exponential

Complex exponentials:

▪ Powers of imaginary numbers

= rotating vectors

▪ Euler‘s formula:

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

𝑧 = 𝑒𝑖𝑥

1

∡𝑧

Im

Re

Real Fourier Series

Fourier Basis

Fourier basis (orthonormal)

𝐵 = 1, 2 sin 2𝜋𝑘𝑥 , 2 cos 2𝜋𝑘𝑥 𝑘 ∈ ℕ≥1

Fourier series

▪ Periodic functions 𝑓: 0,1 → ℝ

▪ Fourier series approximation:

ሚ𝑓 𝑥 = 𝑏0 + 2෍

𝑘=0

∞

𝑎𝑘 sin 2𝜋𝑘𝑥 + 𝑏𝑘 cos 2𝜋𝑘𝑥

▪ Coefficients?

Fourier Basis

Fourier series

▪ Fourier series:

ሚ𝑓 𝑥 = 𝑏0 + 2෍

𝑘=0

∞

𝑎𝑘 sin 2𝜋𝑘𝑥 + 𝑏𝑘 cos 2𝜋𝑘𝑥

▪ Coefficients?

𝑎𝑘 = 𝑓(𝑥), 2 sin 2𝜋𝑘𝑥 = 2න
0

1

𝑓 𝑥 ⋅ sin 2𝜋𝑘𝑥 𝑑𝑥

𝑏𝑘 = 𝑓(𝑥), 2 cos 2𝜋𝑘𝑥 = 2න
0

1

𝑓 𝑥 ⋅ cos 2𝜋𝑘𝑥 𝑑𝑥

▪ Convergence?

𝑏0 = 𝑓(𝑥), 1 = න
0

1

𝑓 𝑥 𝑑𝑥

Fourier Series

Fourier Series

▪ Converges for functions

▪ Finite variation

▪ Lipschitz-smooth

▪ Convergence means:

lim
𝑘→∞

𝑓 − ሚ𝑓
2
= lim

𝑘→∞
𝑓 − ሚ𝑓, 𝑓 − ሚ𝑓 = 0

Complex

Fourier Series

Fourier Basis

Fourier basis (real):

𝐵ℝ = 1, 2 sin 2𝜋𝑘𝑥 , 2 cos 2𝜋𝑘𝑥 𝑘 ∈ ℕ

Fourier basis (complex):

𝐵ℂ = exp 2𝜋𝑖𝑘𝑥 𝑘 ∈ ℤ

Complex Series

Fourier series

▪ Fourier series:

ሚ𝑓 𝑥 = ෍

𝑘=−∞

∞

𝑧𝑘 exp 2𝜋𝑖𝑘𝑥

▪ Coefficients?

Tip: 3BLUE1BROWN – But what is a Fourier series? From heat flow to circle drawings
https://www.youtube.com/watch?v=r6sGWTCMz2k

𝑧𝑘 = 𝑓 𝑥 , exp −2𝜋𝑖𝑘𝑥

= න
0

1

𝑓 𝑥 ⋅ exp −2𝜋𝑖𝑘𝑥 𝑑𝑥
Hermetian space

Scalar Product on Real Function Spaces

Real (finite-dim.) Vector Spaces

▪ For 𝐳, 𝐪 ∈ ℝ𝑑: 𝐳, 𝐪 ≔ 𝐳𝑇𝐪

Real Function Spaces

▪ For suitable*) functions

𝑓, 𝑔: Ω ⊂ ℝ → ℝ

the standard scalar product is defined as:

𝑓 ⋅ 𝑔 = 𝑓, 𝑔 ≔ න
Ω

𝑓 𝑥 ⋅ 𝑔 𝑥 𝑑𝑥

▪ Measures an norm and angle in an abstract sense

*) square-integrable

Complex Function Spaces

Hermetian Vector Space

▪ For 𝐳, 𝐪 ∈ ℂ𝑑: 𝐳, 𝐪 ≔ 𝐳𝑇ഥ𝐪

Hermetian Function Space

▪ For suitable functions

𝑓, 𝑔: Ω ⊂ ℝ → ℂ

the standard scalar product is defined as:

𝑓 ⋅ 𝑔 = 𝑓, 𝑔 ≔ න
Ω

𝑓 𝑥 ⋅ 𝑔 𝑥 𝑑𝑥

▪ Measures an norm and angle in an abstract sense

𝑧 = 𝑎 + 𝑖𝑏
ҧ𝑧: = 𝑎 − 𝑖𝑏

Fourier Transform

Fourier Transform

Continuous transform:

▪ Continuous function set: {𝑒−𝑖2𝜋𝜔𝑥 𝜔 ∈ ℝ

▪ Orthogonal on ℝ

▪ Projection via scalar products  Fourier transform

▪ Fourier transform: (f: ℝ → ℂ) → F:ℝ → ℂ

𝐹(𝜔) = න
−∞

∞

𝑓 𝑥 𝑒−2𝜋𝑖𝑥𝜔𝑑𝑥

▪ Inverse Fourier transform: F:ℝ → ℂ → (f:ℝ → ℂ)

𝑓(𝑥) = න
−∞

∞

𝐹 𝜔 𝑒2𝜋𝑖𝑥𝜔𝑑𝜔

Fourier Transform
Interpreting the result:

▪ Transforming a real function

𝑓(𝑥):ℝ → ℝ

▪ Result: F 𝜔 :ℝ → ℂ

▪ 𝜔 are frequencies (real)

▪ Real input 𝑓: Symmetric result

F −𝜔 = F 𝜔

▪ Output are complex numbers

▪ Magnitude: “power spectrum”

(frequency content)

▪ Phase: phase spectrum

(encodes shifts)

𝜔 = 𝑒−𝑖𝑥

𝜔

∡𝜔

Im

Re

Important Functions

Some important Fourier-transform pairs

▪ Box function:

𝑓 𝑥 = box 𝑥 → 𝐹 𝜔 =
sin𝜔

𝜔
≔ sinc 𝜔

▪ Gaussian:

𝑓 𝑥 = 𝑒−𝑎𝑥
2

→ 𝐹 𝜔 =
𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

box(x) sinc(𝜔)

Triangle Function
Bilinear Interpolation

triangle(x)

sinc(𝜔)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

-100 -80 -60 -40 -20 0 20 40 60 80 100

𝑓 𝑥 = triangle 𝑥 → 𝐹 𝜔 =
sin2𝜔

𝜔2
≔ sinc2 𝜔

Higher Dimensional FT

Multi-dimensional Fourier Basis:

▪ Functions 𝑓:ℝ𝑑 → ℂ

▪ 2D Fourier basis:

𝑓(𝑥, 𝑦) represented

as combination of

{𝑒−𝑖2𝜋𝜔𝑥𝑥 ⋅ 𝑒−𝑖2𝜋𝜔𝑦𝑦 𝜔𝑥, 𝜔𝑦 ∈ ℝ

▪ In general:

▪ All combinations of 1D functions

▪ „Tensor product basis“

▪ 𝑏𝑖,𝑗(𝑥, 𝑦) = 𝑏𝑖(𝑥) ⋅ 𝑏𝑗(𝑦)

Tensor Product

Example

Gaussian Basis Functions

𝑏𝑖(𝑥)

𝑏𝑖,𝑗(𝑥, 𝑦) 𝑏𝑖,𝑗(𝑥, 𝑦)

𝑏𝑗(𝑦)

Convolution
Convolution:

▪ Weighted average of functions

▪ Definition:

Example:
t

g
f

 =

𝑓 𝑡 ⊗ 𝑔 𝑡 = න
−∞

∞

𝑓 𝑥 𝑔 𝑥 − 𝑡 𝑑𝑥

Theorems

Convolution theorem:

▪ Fourier Transform converts convolution into

multiplication

𝐹𝑇 𝑓⨂𝑔 = 𝐹 ⋅ G

Theorems

Convolution theorem:

▪ Fourier Transform converts convolution into

multiplication

𝐹𝑇 𝑓⨂𝑔 = 𝐹 ⋅ G

All other cases as well

▪ 𝐹𝑇−1 𝐹 ⋅ 𝐺 = 𝑓⨂𝑔

▪ 𝐹𝑇 𝑓 ⋅ 𝑔 = 𝐹⨂G

▪ 𝐹𝑇−1 𝐹⨂𝐺 = 𝑓 ⋅ 𝑔

▪ (Formally: Fourier basis diagonalizes shift-invariant

linear operators)

Signal Theory

Sampling a Signal

Given:

▪ Signal 𝑓:ℝ → ℝ

▪ Store digitally:

▪ Sample regularly …𝑓 0.3 , 𝑓 0.4 , 𝑓 0.5 …

▪ Question: what information is lost?

Delta Function

Dirac Delta “Function”

▪ ℝ׬ 𝛿 𝑥 𝑑𝑥 = 1, zero everywhere but at 𝑥 = 0

▪ Idealization (“distribution”) – think of very sharp peak

f(x)

x

f(x)

x

f(x)

x

f(x)

x
න
Ω

𝑓 𝑥 𝑑𝑥 = 1

Fourier Transform

Fourier Transform Pair

▪ Dirac delta function ↔ uniform spectrum…

▪ …and vice versa.

f(x)

x

F(𝜔)

x

Important Functions

Intuition: Gaussians

𝑓 𝑥 = 𝑒−𝑎𝑥
2

→ 𝐹 𝜔 =
𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

Dirac Comb (Impulse Train)

Impulse Train

III𝑇(𝑥) = ෍

𝑘=−∞

∞

𝛿 𝑥 − 𝑘 ⋅ 𝑇

Fourier Transform

𝐹𝑇(III𝑇) =
1

𝑇
III1/𝑇

x

f(x)

𝜔

F(𝜔)

Sampling

Sampling a function

▪ Multiplication with impulse train

𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑥 = 𝑓 𝑥 ⋅ III𝑇 𝑥

x

f(x)

Sampling & Reconstruction

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles & Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 “Aliasing and Antialiasing”

Sampling a Signal

Sampling a Signal

Reconstructing a Signal

Regular Sampling

Results: Sampling

▪ Band-limited signals can be represented exactly

▪ Sampling with frequency 𝜈𝑠:
Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2

▪ Higher frequencies alias

▪ Aliasing artifacts (low-frequency patterns)

▪ Cannot be removed after sampling (loss of information)

band-limited aliasing

Regular Sampling

Result: Reconstruction

▪ When reconstructing from discrete samples

▪ Use band-limited basis functions

▪ Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2

▪ Otherwise: Reconstruction aliasing

pixel Gaussian

Regular Sampling

Reconstruction Filters

▪ Optimal filter: sinc

(no frequencies discarded)

▪ However:

▪ Ringing artifacts in spatial domain

▪ Not useful for images

(better for audio)

▪ Compromise

▪ Gaussian filter

(most frequently used)

▪ There exist better ones,

such as Mitchell-Netravalli,

Lancos, etc...

Ringing by sinc reconstruction
from [Mitchell & Netravali,
Siggraph 1988]

2D sinc 2D Gaussian

Irregular Sampling

Irregular Sampling

Irregular Sampling

▪ No comparable formal theory

▪ However: similar idea

▪ Band-limited by “sampling frequency”

▪ Sampling frequency = mean sample spacing

– Not as clearly defined as in regular grids

– May vary locally (adaptive sampling)

▪ Aliasing

▪ Random sampling creates noise as aliasing artifacts

▪ Evenly distributed sample concentrate noise in higher

frequency bands in comparison to purely random sampling

Consequences

When designing bases for function spaces

▪ Use band-limited functions

▪ Typical scenario:

▪ Regular grid with spacing 𝜎

▪ Grid points 𝐠𝑖

▪ Use functions: exp −
𝐱−𝐠𝑖

2

𝜎2

▪ Irregular sampling:

▪ Same idea

▪ Use estimated sample spacing instead of grid width

▪ Set 𝜎 to average sample spacing to neighbors

Random Sampling

Random sampling

▪ Aliasing gets replaced by noise

▪ Can we optimize this? – Yes!

Different types of noise

▪ “White noise”: All frequencies equally likely

▪ “Blue noise”: Pronounced high-frequency content

Depends on sampling

▪ Random sampling is “white”

▪ Poisson-disc sampling (uniform spacing) is “blue”

Random Noise

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Poisson Disc Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Regular Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (Uniform Displacem.)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (same density)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Examples

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Why should we care?

Exampe: Stochastic Raytracing

▪ Shoot random rays → random noise

▪ Low-pass filter → less noise

▪ Low-frequency noise persists

▪ LF-noise is particularly ugly!

▪ Need many samples

Recipe:

Sampling Signals

How to Sample

Given

▪ Function 𝑓:ℝ → ℝ

Uniform sampling

▪ Sample spacing 𝛿 (given)

Choose filter kernel

▪ In case of doubt, try:

𝜔 x = exp −𝛿−1𝑥2

▪ Sample 𝑓 ⊗𝜔 x regularly

▪ For example: Monte-Carlo integration

How to Sample

Given

▪ Function 𝑓:ℝ𝑛 → ℝ𝑚

Multi-dimensional Gaussian

▪ In case of doubt, try:

𝜔 x =ෑ

𝑑=1

n

exp −
1

𝛿
𝑥𝑑
2

▪ Same procedure otherwise…

How to Sample

Multi-dimensional Gaussian

𝜔 x =ෑ

𝑑=1

n

exp −
1

𝛿
𝑥𝑑
2

How to Sample

Non-Uniform Sampling

▪ Choose sample spacing 𝛿 x

▪ Match level of detail

▪ Nyquest limit

▪ Spacing between two “ups” = frequency

▪ Filter adaptively

▪ Varying filter width

▪ Sample adaptively

▪ Sampling width varies accordingly

Recipe:

Reconstructing Signals

Signal Rec

Uniform

▪ Given samples 𝑦𝑖 = 𝑓 𝑥𝑖 , 𝑖 = 1, … , 𝑛, spacing 𝛿

▪ Chose reconstruction filter

▪ Try: 𝜔 x = exp −𝛿−2𝑥2

Reconstruction: ሚ𝑓 = σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖

Non-Uniform

Non-Uniform

▪ Samples 𝑦𝑖 = 𝑓 𝑥𝑖 , 𝑖 = 1, … , 𝑛,

▪ Varying spacing 𝛿𝑖
▪ If unknown: average spacing of k-nearest neighbors

▪ Chose reconstruction filter

▪ Try: 𝜔𝑖 x = exp −𝛿𝑖
−2 𝑥 − 𝑥𝑖

2

Reconstruction:

“Partition of Unity”
just to be save…

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔𝑖 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔𝑖 x − 𝑥𝑖

Reconstruction: Implementation

Variant 1: Gathering

▪ Record samples in list (plus kD Tree, Octree, grid)

▪ For each pixel:

▪ Range query: kernel support radius

▪ Compute weighted sum (last slide)

Variant 2: Splatting

▪ Two pixel buffers: Color (3D), weight (1D)

▪ Iterate over samples:

▪ Add Gaussian splat to weight buffer

▪ Add 3× Gaussian splat scaled by RGB to color buffer

▪ In the end: Divide color buffer by weight buffer.

Gathering

filter 𝜔

1 pixel

rays 𝑥𝑖, 𝑓(𝑥𝑖)

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Splatting

color buffer weight buffer

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Remark: Anisotropic Filtering

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Building Anisotropic Filters

How to construct?

▪ Given: Kernel 𝑤(𝐱)

▪ For example: 𝑤 𝐱 = exp −
1

2𝜎
𝐱T𝐱

▪ Coordinate transformation:

▪ 𝑤 𝐱 → 𝑤 𝐓𝐱

▪ Gaussian: 𝑤 𝐱 = exp −
1

2𝜎
𝐱T 𝐓T ⋅ 𝐓 𝐱

main axis

𝐱T𝐱

𝐱T 𝐓T ⋅ 𝐓 𝐱

Advanced

Reconstruction

Push-Pull Algorithm

Problem with partition-of unity:

Artifacts at boundaries of sampling

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Remedy

Push-Pull-Algorithm

▪ Reconstruct at multiple levels (stratification)

▪ Build quadtree

▪ Keep one sample per cell

▪ Creates different levels

▪ Add results together

▪ Do not reconstruct in empty cells

Reduced bias

Advanced Reconstruction

Moving Least-Squares

Moving Least Squares

Moving least squares (MLS):

▪ MLS is a standard technique for scattered data

interpolation.

▪ Generalization of partition-of-unity method

Weighted Least-Squares
Least Squares Approximation:

target values basis functions

B1 B2 B3

least squares fit

pi = (xi, yi)

(x)

weighting functions

Least-Squares

Least Squares Approximation:

)()(
~

1

xBxy
i

n

i

i
=

= 

()
=

−

n

i

iii

i

xyxy

c 1

2

)()(
~

argmin 

Best Fit (weighted):

Least-Squares

Notation:  nBB ,...,: 1=b

















−−

−−

=

)(

)(

:
1

nx

x

b

b

B 

















=

ny

y


1

:y

)(

)(

:
1

nx

x























=W

() ()yWBλBWB 22 TT =Normal Equations:

() yWBBWBλ 212 TT −
=Solution:

() yWBBWBbλb 2T12TT)(),()(~ −
== xxxyEvaluation:

MLS approximation

Moving Least-Squares
Moving Least Squares Approximation:

target values

move basis and weighting function,
recompute approximation y(x)~

Moving Least-Squares
Moving Least Squares Approximation:

target values

approximation

Summary: MLS

Standard MLS approximation:

▪ Choose set of basis functions

▪ Typically monomials of degree 0,1,2

▪ Choose weighting function

▪ Typical choices: Gaussian, Wendland function, B-Splines

▪ Solution will have the same continuity as the weighting function.

▪ Solve a weighted least squares problem at each point:

▪ Need to invert the “moment matrix” at each evaluation.

▪ Use SVD if sampling requirements are not guaranteed.

moment matrix

() yWBBWBb 2T12TT)()()()()()()(~ xxxxxxxy
−

=

Remark

Uncertainty Relation(s)

Fourier Transform Pairs

Gaussians

𝑓 𝑥 = 𝑒−𝑎𝑥
2

→ 𝐹 𝜔 =
𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

𝑥 𝜔

Taylor-Approximation

𝑓(𝑥)

Function f

𝑓(𝑥)

Think of this:

neighborhood differences

𝑥

tangent slope

𝑓′(𝑥)

𝑥

𝑓:ℝ → ℝ

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖 − 𝑦𝑖−1

ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

ต
ℎ

